
Neural network and its training

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

The beginning of the story

 Birds inspired us to fly, burdock plants inspired Velcro, and nature has inspired

countless more inventions

 This is the logic that sparked artificial neural networks (ANNs)

 An ANN is a Machine Learning model inspired by the networks of biological neurons

found in our brains

 ANNs are versatile, powerful, and scalable, making them ideal to tackle large

and highly complex Machine Learning tasks

 Such as classifying billions of images (e.g., Google Images)

 Helping us focus on the applications rather than coding for the functions (e.g. Copilot)

 Powering speech recognition services (e.g., Apple’s Siri)

 Recommending the best videos to watch to users every day (e.g., YouTube)

 Learning to beat the world champion at the game of Go (DeepMind’s AlphaGo)

2

The beginning of the story

 ANNs have been around for quite a while: they were first introduced back in

1943 by the neurophysiologist McCulloch and the mathematician Pitts

 Neural networks became popular in the 1980s. Then along came SVMs, Random Forests in

the 1990s, and Neural Networks took a back seat

 Re-emerged around 2010 as Deep Learning

 There is now a huge quantity of data available to train neural networks, and ANNs

frequently outperform other ML techniques on very large and complex problems

 The tremendous increase in computing power since the 1990s now makes it possible to

train large neural networks in a reasonable amount of time

 Much of the credit goes to three pioneers and their students: Yann LeCun, Georey Hinton

and Yoshua Bengio, who received the 2019 ACM Turing Award for their work in Neural

Networks

3

The Perceptron

 The threshold logic unit (TLU) computes a weighted sum of its inputs

σ𝑗=1
𝑝

𝑤𝑘𝑗𝑋𝑗, then applies a step (Activation) function to that sum and output

ℎ𝑒𝑎𝑣𝑖𝑑𝑖𝑑𝑒(𝑧) = ቊ
0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

 It is an artificial neuron. A single TLU can be used for simple linear binary

classification and if the result exceeds a threshold, it outputs positive class

4

https://dafriedman97.github.io/mlbook/content/c3/s1/perceptron.html

The Perceptron

 A Perceptron is composed of a single layer of TLUs, with each TLU connected

to all the inputs

5

 When all neuron in a layer

are connected to every

neuron in the previous layer,

it is call dense layer

 The input neuron output

whatever input they are fed

and form the input layer

 An extra bias neuron is

added which outputs 1 all

the time

Neural Network (The Multilayer Perceptron)

 The four features 𝑋1, … , 𝑋4 make up the units in the input layer

 Each of the inputs from the input layer feeds into each of the 𝐾 (5 here) hidden units

𝑓 𝑋 = 𝛽0 +෍

𝑘=1

𝐾

𝛽𝑘𝐴𝑘 = 𝛽0 +෍

𝑘=1

𝐾

𝛽𝑘𝑔 (𝑤𝑘0 +෍

𝑗=1

𝑝

𝑤𝑘𝑗𝑋𝑗)

6

Lower layer Higher (top) layer

Details

 𝑔(𝑧) is called the activation function

 Activation functions in hidden layers are typically nonlinear, otherwise the model collapses

to a linear model

 𝐴𝑘 are the activations which are different transformation of original features (Like the basis

functions in the Generalized additive model)

 Fitting a neural network requires estimating the unknown parameters. For a

quantitative response, typically squared-error loss is used

෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))
2

7

Details

 The sigmoid activation function was favored in the early age

𝑔 𝑧 =
1

1 + 𝑒−𝑧

 The preferred choice in modern neural networks is the ReLU (rectified linear

unit) activation function, which takes the form

𝑔 𝑧 = (𝑧)+= ቊ
0 𝑖𝑓 𝑧 < 0
𝑧 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

8

Multilayer Neural Networks

 Modern neural networks typically have more hidden layers, and often many

units per layer. In theory, a single hidden layer with a large number of units has

the ability to approximate most functions (Universal approximation theorem)

 However, the learning task of discovering a good solution is made much easier

with multiple layers each of modest size –This is why deep!

 When an ANN contains a deep stack of hidden layers, it is called a deep neural

network (DNN). The field of Deep Learning studies DNNs

 However, many people talk about Deep Learning whenever neural networks are involved

(even shallow ones)

9

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Example: MNIST Digits

 Handwritten digits 28 × 28 grayscale images with 60𝐾 train and 10𝐾 test

 Features are the 784 pixel grayscale values ∈ [0, 255]

 Labels are the digit class 0 − 9 with one-hot encoding

 Goal: build a classifier to predict the image class

 We build a network with two hidden layer which has 256 units at first layer, 128 units at

second layer, and 10 units at output layer. Along with intercepts (called biases) there are

235,146 parameters (referred to as weights)

10

Multilayer Neural Networks

 𝐴𝑘
(1)

= 𝑔 𝑤𝑘0
1
+ σ𝑗=1

𝑝
𝑤𝑘𝑗

1
𝑋𝑗

for 𝑘 = 1,… , 𝐾1

 𝐴𝑙
(2)

= 𝑔 (𝑤𝑙0
(2)

+ σ𝑘=1
𝐾1 𝑤𝑙𝑘

(2)
𝐴𝑘
(1)
)

for 𝑙 = 1,… , 𝐾2
 The 𝑊1,𝑊2 and 𝐵 has 785 ×
256, 257 × 128 and 129 × 10
elements, respectively

11

Multilayer Neural Networks

 Let 𝑍𝑚 = 𝛽𝑚 + σ𝑙=1
𝐾2 𝛽𝑚𝑙𝐴𝑙

(2)
, 𝑚 = 0,1,… , 9 be 10 linear combinations of

activations at second layer

 Output activation function encodes the softmax function (This ensures that the 10 numbers

behave like probabilities (non-negative and sum to one))

𝑓𝑚 𝑋 = Pr 𝑌 = 𝑚 𝑋 =
𝑒𝑧𝑚

σ𝑙=0
9 𝑒𝑧𝑙

 We fit the model by minimizing the negative multinomial log-likelihood (or

cross-entropy, just like in multinomial logistic regression):

−෍

𝑖=1

𝑛

෍

𝑚=0

9

𝑦𝑖𝑚 log(𝑓𝑚(𝑥𝑖))

 𝑦𝑖𝑚 is 1 if true class for observation 𝑖 is 𝑚, else 0 – i.e. one-hot encoded.

12

Results

 Early success for neural networks in the 1990s

 There are almost four times as many coefficients in the neural network model!

 With so many parameters, regularization is essential

 Some details of regularization and fitting will come later

 Best reported rates are < 0.5%!

 Human error rate is reported to be around 0.2%, or 20 of the 10K test images

13

Fitting a Neural Network

 This problem is difficult because the objective is nonconvex, for a neural

network with one hidden layer we have

min
{𝑤𝑘}1

𝐾,𝛽

1

2
෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑓 𝑥𝑖 = 𝛽0 +෍

𝑘=1

𝐾

𝛽𝑘𝑔 (𝑤𝑘0 +෍

𝑗=1

𝑝

𝑤𝑘𝑗𝑥𝑖𝑗)

 Suppose we represent all the parameters in one long vector 𝜃, R 𝜃 =
1

2
σ𝑖=1
𝑛 (𝑦𝑖 − 𝑓𝜃(𝑥𝑖))

2

 Slow learning and regularization are the keys for the successful of training

14

Fitting a Neural Network

1. Start with a guess 𝜃0 for all the parameters in 𝜃, and set 𝑡 = 0

2. Iterate until the objective fails to decrease:

(a) Find a vector 𝛿 that reflects a small change in 𝜃, such that 𝜃𝑡+1 = 𝜃𝑡 + 𝛿 reduces the

objective; i.e. such that 𝑅(𝜃𝑡+1) < 𝑅(𝜃𝑡)

(b) Set 𝑡 ← 𝑡 + 1

15

1. Slow learning - Gradient descent

 How to find a direction 𝛿 that points downhill? We compute the gradient vector

𝛻𝑅 𝜃𝑡 = ቤ
𝜕𝑅 𝜃

𝜕𝜃
𝜃=𝜃𝑡

 The gradient points uphill, so our update is 𝛿 = −η𝛻𝑅 𝜃𝑡

𝜃𝑡+1 ← 𝜃𝑡 − η𝛻𝑅 𝜃𝑡

Where η is the learning rate which is typically small

 𝑅 𝜃 = σ𝑖=1
𝑛 𝑅𝑖(𝜃) is a sum, so gradient is sum of gradients

 For a small enough value of the learning rate η, this step will decrease the objective

 If the gradient vector is zero, then we may have arrived at a minimum of the objective

16

Gradients and Backpropagation

 𝑅𝑖 𝜃 =
1

2
σ𝑖=1
𝑛 (𝑦𝑖 − 𝑓(𝑥𝑖))

2 =
1

2
𝑦𝑖 − 𝛽0 + σ𝑘=1

𝐾 𝛽𝑘𝑔 (𝑤𝑘0 +σ𝑗=1
𝑝

𝑤𝑘𝑗𝑥𝑖𝑗)
2

 Let 𝑧𝑖𝑘 = 𝑤𝑘0 + σ𝑗=1
𝑝

𝑤𝑘𝑗𝑥𝑖𝑗

 Backpropagation uses the chain rule for differentiation:
𝜕𝑅𝑖(𝜃)

𝜕𝛽𝑘
=
𝜕𝑅𝑖(𝜃)

𝜕𝑓𝜃(𝑥𝑖)
∙
𝜕𝑓𝜃 𝑥𝑖
𝜕𝛽𝑘

= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ∙ 𝑔(𝑧𝑖𝑘)

𝜕𝑅𝑖(𝜃)

𝜕𝑤𝑘𝑗
=
𝜕𝑅𝑖(𝜃)

𝜕𝑓𝜃(𝑥𝑖)
∙
𝜕𝑓𝜃 𝑥𝑖
𝜕𝑔(𝑧𝑖𝑘)

∙
𝜕𝑔(𝑧𝑖𝑘)

𝜕𝑧𝑖𝑘
∙
𝜕𝑧𝑖𝑘
𝜕𝑤𝑘𝑗

= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ∙ 𝛽𝑘 ∙ 𝑔
′(𝑧𝑖𝑘) ∙ 𝑥𝑖𝑗

 Notice that both these expressions contain the residual. So the act of differentiation assigns a

fraction of the residual to each of the parameters via the chain rule

 In just two passes through the network (one forward, one backward), it can find out how

each connection weight and each bias term should be tweaked in order to reduce the error

17

https://cs231n.github.io/optimization-2/
https://dafriedman97.github.io/mlbook/content/c7/concept.html#back-propagation

Gradients and Backpropagation

 The forward pass computes the output of all the neurons in current layer and

send it to next layer. It is exactly like making predictions, except all

intermediate results are preserved since they are needed for the backward pass

 The backward pass measures how much of output error contributions came

from each connection in the layer below, again using the chain rule, working

backward until the algorithm reaches the input layer. This reverse pass

efficiently measures the error gradient across all the connection weights in the

network by propagating the error gradient backward through the network

 The algorithm performs a Gradient Descent step to tweak all the connection

weights in the network, using the error gradients it just computed
18

Gradient descent

 Some notice

 Determine the step η which is call the learning rate is important

 It is important to ensure that features have similar scale

19

Gradient descent

 The Gradient Descent uses the whole training set to compute the gradients at

every step σ𝑖=1
𝑛 𝑅𝑖(𝜃), which makes it very slow

 Stochastic Gradient Descent (SGD) picks a random instance in the training set at

every step and computes the gradients based only on it. Due to its stochastic nature,

it is much less regular than Gradient Descent

20

 Mini-batch Gradient Descent or again

SGD instead computes the gradients

on small random sets of instances. The

main advantage of Mini-batch GD is

that you can get a performance boost

from hardware optimization of matrix

operations using GPUs

Gradient descent

 Randomness is good to escape from local optima, but bad because it

means that the algorithm can never settle at the minimum

 One solution to this dilemma is to gradually reduce the learning rate

 The steps start out large, then get smaller and smaller, allowing the algorithm to

settle at the global minimum. The function that determines the learning rate at each

iteration is called the learning schedule.

21

Learning rate scheduling

 Rather than constant, finding a good learning rate is very important

 Power/exponential scheduling: Set the learning rate to a function of the iteration number 𝑡,
for instance η 𝑡 = η0 ∙ 0.1

𝑡/𝑠

 Piecewise constant scheduling: Use a constant learning rate for a number of iterations, then

a smaller learning rate for another number of iterations…

22

 Performance scheduling: Measure the

validation error every 𝑁 steps, and

reduce the learning rate by a factor of

𝐶 when the error stops dropping

 1cycle scheduling

https://www.deepspeed.ai/tutorials/one-cycle/

Gradient descent

 Training a very large deep neural network can be painfully slow, many faster

optimizers are proposed based on the idea of Momentum

 𝜃𝑖
𝑡+1 = 𝜃𝑖

𝑡 + 𝑣𝑖
𝑡 , where 𝑣𝑖

𝑡= 𝛽𝑣𝑖
𝑡−1 − η𝛻𝑅 𝜃𝑖

𝑡 , 𝑣𝑖
0 = 0 and 𝛽 (set to 0.9) is momentum

 More optimizer see here

23
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML2020/Optimization.pdf

https://github.com/jettify/pytorch-optimizer
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML2020/Optimization.pdf

Tricks of the Trade

 The MNIST problem

 Slow Learning. the model is fit using gradient descent. The fitting process is then stopped

when overfitting is detected (With early stopping)

 Stochastic gradient descent. Use a small minibatch drawn at random at each step. E.g. for

MNIST data, we use minibatches of 128 observations

24

 20% of the 60,000 training observations

were used as a validation set

 An epoch is a count of iterations and

amounts to the number of minibatch

updates such that 𝑛 samples in total have

been processed; i.e. 48𝐾/128 = 375 steps

per epoch for MNIST

2. Regularization

 A model with millions of parameters would severely risk overfitting the

training set, especially if there are not enough training instances or if they are

too noisy

 Regularization

𝑅 𝜃; λ = −෍

𝑖=1

𝑛

෍

𝑚=0

9

𝑦𝑖𝑚 log(𝑓𝑚(𝑥𝑖)) + λ෍

𝑗

𝜃𝑗
2

 If you want a sparse model (with many weights equal to 0), you can use 𝑙1

25

Dropout Learning

 Similar to randomly omitting variables when growing trees in random forests

 At each SGD step, randomly remove units with probability Φ, the surviving units stand in

for those missing, and their output weights are scaled up by a factor Τ1 (1 − Φ) to

compensate during training or we can multiply each input connection weight by the (1 – Φ)

after training

 We do not perform dropout at the output layer or after the training is done, neurons don’t

get dropped anymore. In practice, you can usually apply dropout only to the neurons in the

top one to three layers (excluding the output layer)

26

Dropout Learning

 Neurons trained with dropout have to be as useful as possible on their own.

They also cannot rely on just a few input neurons; they must pay attention to

each of their input neurons. They end up being less sensitive to slight changes

in the inputs so you get a more robust network that generalizes better

 If you observe that the model is overfitting, you can increase the dropout rate. Conversely,

you should try decreasing the dropout rate if the model underfits the training set

 Since each neuron can be either present or absent, there are a total of 2𝑛 possible networks

after 𝑛 steps, The resulting neural network can be seen as an averaging ensemble of part of

these smaller neural networks

27

Early stopping

 Another way to regularize iterative learning algorithms such as Gradient

Descent is to stop training as soon as the validation error reaches a minimum.

This is called early stopping

 With early stopping you just stop training as soon as the validation error reaches the

minimum. It is such a simple and efficient regularization technique that Geoffrey Hinton

called it a “beautiful free lunch.”

28

3. The Vanishing/Exploding Gradients Problems

 You may be faced with vanishing/exploding gradients. This is when the

gradients grow smaller and smaller, or larger and larger, when flowing

backward through the DNN during training

 The cumulative errors that occur in sequential transmission over a noisy channel

 𝑦 = 𝑓4 𝑓3 𝑓2 𝑓1 𝑥

 To adjust the parameters of each function in the chain based on the error recorded on the

output of 𝑓4 (the loss of the model). To adjust 𝑓1, you’ll need to percolate error

information through 𝑓2, 𝑓3, and 𝑓4. However, each successive function in the chain

introduces some amount of noise. If your function chain is too deep, this noise starts

overwhelming gradient information, and backpropagation stops working!

29

The Vanishing/Exploding Gradients Problems

 The combination of logistic sigmoid activation function and the weight

initialization (i.e., a normal distribution with a mean of 0 and a standard

deviation of 1) cause problem

 With this activation function and this initialization scheme, the variance of the outputs of

each layer is much greater than the variance of its inputs. Going forward in the network,

the variance keeps increasing after each layer until the activation function saturates

30

 The function saturates at 0 or 1, with a

derivative extremely close to 0!

https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://programmathically.com/understanding-the-exploding-and-vanishing-gradients-problem/

The Vanishing/Exploding Gradients Problems

 We need the variance of the outputs of each layer to be equal to the variance of

its inputs, and we need the gradients to have equal variance before and after

flowing through a layer in the reverse direction

 Let 𝑓𝑎𝑛𝑎𝑣𝑔 =
𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡

2
, 𝑟 = 3𝜎2

 Initialize weight with normal distribution (mean 0, variance 𝜎2) or uniform distribution

between – 𝑟 and 𝑟

31

Initialization Activation functions 𝜎2

Glorot (Xavier) None, tanh, sigmoid, softmax 1/𝑓𝑎𝑛𝑎𝑣𝑔

He ReLu and its variants 2/𝑓𝑎𝑛𝑖𝑛

Lecun SELU 1/𝑓𝑎𝑛𝑖𝑛

𝑓𝑎𝑛𝑖𝑛

𝑓𝑎𝑛𝑜𝑢𝑡

Nonsaturating Activation Functions

 ReLU activation function does not saturate for positive values but

 It suffers from a problem known as the dying ReLUs: during training, some neurons stop

outputting anything other than 0 and Gradient Descent does not affect it anymore because

the gradient of the ReLU function is zero when its input is negative

 You may want to use a variant of the ReLU function, such as the leaky ReLU or

exponential linear unit (ELU)

32

max(𝛼𝑧, 𝑧)
ቊ
𝛼 𝑒𝑧 − 1 𝑖𝑓 𝑧 < 0
𝑧 𝑖𝑓 𝑧 ≥ 0

https://mlfromscratch.com/activation-functions-explained/

Batch normalization

 Adding an operation in the model before or after the activation function of each

hidden layer

 This operation zero-centers and normalizes each input, then scales and shifts the result

using two new parameter vectors per layer: one for scaling, the other for shifting

 The operation lets the model learn the optimal scale and mean of each of the layer’s inputs

using current mini-batch (𝛾 and β are learned through regular backpropagation)

𝜇𝐵 =
1

𝑚𝐵
෍

𝑖=1

𝑚𝐵

𝑥𝑖

𝜎𝐵
2 =

1

𝑚𝐵
෍

𝑖=1

𝑚𝐵

(𝑥𝑖 − 𝜇𝐵)
2

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜀

𝑧𝑖 = 𝛾 ∙ ො𝑥𝑖 + β
33

𝑥𝑖

𝑧𝑖

BN Layer

Batch normalization

 Batch Normalization estimate μ and σ for testing (to replace 𝜇𝐵 and 𝜎𝐵) during

training by using a moving average of the layer’s input means and standard

deviations (Totally four parameters per layer if we consider 𝛾 and β)

 ො𝜇 = ො𝜇 × momentum + μ(1−momentum)

 Batch Normalization significantly speed up the training and avoid the use of

regularization

 The main effect of batch normalization appears to be that it helps with gradient propagation

by feature normalization and thus allows for deeper networks

 However, it adds some complexity and there is a runtime penalty: the neural network

makes slower predictions due to the extra computations required at each layer. Fortunately,

it’s often possible to fuse the BN layer with the previous layer, after training

34

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/normalization_v4.pdf
https://nenadmarkus.com/p/fusing-batchnorm-and-conv/

Why deep?

 If you want to make a complex system simpler, there’s a recipe you can apply:

just structure it into modules, organize the modules into a hierarchy, and start

reusing the same modules in multiple places as appropriate

 If you’re a software engineer, you’re already keenly familiar with these principles: an

effective codebase is one that is modular, hierarchical, and where you don’t re-implement

the same thing twice, but instead rely on reusable classes and functions

 Deep learning itself is simply the application of this recipe to continuous optimization via

gradient descent: you take a classic optimization technique (gradient descent over a

continuous function space), and you structure the search space into modules (layers),

organized into a deep hierarchy, where you reuse whatever you can (for instance,

convolutions are all about reusing the same information in different spatial locations)

 Deeper hierarchies are intrinsically good because they encourage feature reuse

35

Why deep?

 For complex problems, deep networks have a much higher parameter

efficiency than shallow ones

 Model complex functions using exponentially fewer neurons than shallow nets

 Real-world data is often structured in such a hierarchical way, and deep neural

networks take advantage of this fact

 Lower hidden layers model low-level structures (e.g., line segments of various shapes and

orientations), intermediate hidden layers combine these structures to model intermediate-

level structures (e.g., squares, circles), and the highest hidden layers and the output layer

combine these intermediate structures to model high-level structures (e.g., faces)

 It can also generalize better by keeping the weight of lower layer and perform transfer

learning

36

How to choose the network architectures?

 Number of Hidden Layers

 You can ramp up the number of hidden layers until you start overfitting the training set

 Number of Neurons per Hidden Layer

 The number of neurons in the input and output layers is determined by the type of input

and output your task requires

 For the hidden layers, using the same number of neurons in all hidden layers so that there

is only one hyperparameter to tune

 Another common practice to size them to form a pyramid, with fewer and fewer neurons at

each layer—the rationale being that many low level features can coalesce into far fewer

high-level features

 It’s simpler and more efficient to pick a model with more layers and neurons

than you need, then use regularization techniques to prevent it from overfitting

37

How to choose the hyperparameters?

 Learning rate

 Find optimal learning rate empirically or use learning rate scheduling

 Number of iterations

 Just use enough iterations and use early stopping

 Batch size

 The main benefit of using large batch sizes is that hardware accelerators like GPUs can

process them efficiently

 Activation function

 In general, the variants of ReLU activation function will be a good default for all hidden

layers. For the output layer, it really depends on your task

38

Architecture

39

Hyperparameters

40

41
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

When to Use Deep Learning?

 On a dataset with 263 baseball player and 19 features where we would like to

predict their salary base on the performance of previous year

 A linear model was used to fit the training data, and make predictions on the test data

 The same linear model was fit with lasso regularization. The tuning parameter was selected

by 10-fold cross-validation on the training data. It selected a model with 12 variables

having nonzero coefficients

 A neural network with one hidden layer was fit to the data. This model has 1,409

parameters

42

https://www.kaggle.com/floser/hitters

When to Use Deep Learning?

 When faced with new data modeling and prediction problems, its tempting to

always go for the trendy new methods. Especially when the datasets are very

large and can support the fitting of high-dimensional nonlinear models

 If we can produce models with the simpler tools that perform as well, they are likely to be

easier to fit and understand, and potentially less fragile than the more complex approaches.

Wherever possible, it makes sense to try the simpler models as well, and then make a

choice based on the performance/complexity tradeoff

 Typically we expect deep learning to be an attractive choice when the sample size of the

training set is extremely large, and when interpretability of the model is not a high priority

43

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd

Edition Chapter10~11

[2] An Introduction to Statistical Learning with Applications in R. Second

Edition Chapter 10

44

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.statlearning.com/

Appendix

45

Resources

 Deep learning libraries

 Tensorflow

 Pytorch

 Keras

 https://github.com/krzjoa/awesome-python-data-science#deep-learning

 Playground

 http://playground.tensorflow.org/

 http://tfmeter.icsi.berkeley.edu/

 Logger for deep learning

 https://github.com/microsoft/tensorwatch

 https://github.com/wandb/client

46

https://github.com/tensorflow/tensorflow
https://github.com/pytorch/pytorch
https://keras.io/
https://github.com/krzjoa/awesome-python-data-science#deep-learning
http://playground.tensorflow.org/
http://tfmeter.icsi.berkeley.edu/
https://github.com/microsoft/tensorwatch
https://github.com/wandb/client

Logical Computations with Neurons

 Let’s build a few ANNs that perform various logical computations, assuming

that a neuron is activated when at least two of its inputs are active

 You can imagine how these networks can be combined to compute complex logical

expressions

47

Faster Optimizers

 All the optimization techniques discussed so far only rely on the first-order

partial derivatives (Jacobians). The optimization literature also contains

algorithms based on the second-order partial derivatives

 Since DNNs typically have tens of thousands of parameters, the second order

optimization algorithms often don’t even fit in memory, and even when they do,

computing the Hessians is just too slow

48

Other regularization techniques

 Max-Norm Regularization

 Max-norm regularization does not add a regularization loss term to the overall loss

function. Instead, it is typically implemented by computing |𝑤| after each training step and

rescaling w if needed 𝑤 =
𝑤×𝑟

|𝑤|

49

Other regularization techniques - Monte Carlo (MC) Dropout

 Established a profound connection between dropout networks and approximate

Bayesian inference, giving dropout a solid mathematical justification

 It may boost the performance of any trained dropout model, without having to retrain it or

even modify it at all. It just take the average of dropout preictions!

 MC Dropout is a fantastic technique that boosts dropout models and provides

better uncertainty estimates. And of course, since it is just regular dropout

during training, it also acts like a regularizer

 The number of Monte Carlo samples you is a hyperparameter you can tweak.

The higher it is, the more accurate the predictions and their uncertainty

estimates will be. Try to find the right trade-off between latency and accuracy,

depending on your application

50

https://arxiv.org/pdf/1506.02142.pdf

Nonsaturating Activation Functions

 Scaled ELU (SELU) activation function ensures certain network will be self-

normalized: the output of each layer tend to preserve a mean of 0 and standard

deviation of 1 during training

 The input features must be standardized (mean 0 and standard deviation 1)

 Every hidden layer’s weights must be initialized with LeCun normal initialization

 The network’s architecture must be sequential and contains only dense layer

 In general, the performance of SELU and ELU and will performs better than

traditional activation function

 If the speed is the first priority, try using leaky ReLU and its variants

 If you want to regularize a self-normalizing network based on the SELU activation function (as

discussed later), you should use alpha dropout: this is a variant of dropout that preserves the mean

and standard deviation of its inputs

51

https://mlfromscratch.com/activation-functions-explained/
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf

Hyperparameters for self-normalizing net

52

Gradient clipping

 Another popular technique to mitigate the exploding gradients problem is to

clip the gradients during backpropagation so that they never exceed some

threshold

 If you observe that the gradients explode during training (you can track the size of the

gradients using TensorBoard), you may want to try both clipping by value and clipping by

norm, with different thresholds, and see which option performs best on the validation set

 The difference between clipping by value and by norm

 [0.9, 100.0] will clip to [0.9, 1.0] or [0.00899964, 0.9999595]

53

54

Bias-variance trade-off

55

https://jason-chen-1992.weebly.com/home/-bias-variance-tradeoff

Data Mismatch

 Sometimes the data probably won’t be perfectly representative of the data that

will be used in production

 The most important rule to remember is that the validation set and the test set must be as

representative as possible of the data you expect to use in production, so they should be

composed exclusively of representative pictures: you can shuffle them and put half in the

validation set and half in the test set

56 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

When to Use Machine/Deep Learning

 To summarize, Machine/Deep Learning is great for:

1. Problems for which existing solutions require a lot of fine-tuning or long lists of rules:

one Machine Learning algorithm can often simplify code and perform better than the

traditional approach

2. Complex problems for which using a traditional approach yields no good solution: the

best Machine Learning techniques can perhaps find a solution

3. Fluctuating environments: a Machine Learning system can adapt to new data

4. Getting insights about complex problems and large amounts of data

57

